Бесплатный хостинг картинок 4imgs.ru
Универсальная энциклопедияПерейти на главную страницу сайта

загрузка...

Центробежная сила

Классическая механика
История…
Фундаментальные понятия
Пространство · Время · Масса · Сила
Энергия · Импульс
Формулировки
Ньютоновская механика
Лагранжева механика
Гамильтонова механика
Формализм Гамильтона — Якоби
Разделы
Прикладная механика
Небесная механика
Механика сплошных сред
Геометрическая оптика
Статистическая механика
Учёные
Галилей · Кеплер · Ньютон
Эйлер · Лаплас · Д’Аламбер
Лагранж · Гамильтон · Коши
См. также «Физический портал»

Центробе́жная си́ла[1]сила инерции, которую вводят во вращающейся (неинерциальной) системе отсчёта[2] (чтобы применять законы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси, вокруг которой происходит вращение тела — или — в двумерном случае — от центра вращения (отсюда и название).

Также центробежной силой, особенно в технической литературе, называют силу, действующую со стороны движущегося по круговой траектории тела на вызывающие это вращение связи, равная по модулю центростремительной силе и всегда направленная в противоположную ей сторону.

Содержание

  • 1 Физический смысл
  • 2 Формулировка
  • 3 Вывод
  • 4 Элементарное рассмотрение и мотивировка
    • 4.1 Вращение с точки зрения инерциальной системы отсчета
    • 4.2 Вращение с точки зрения неинерциальной системы отсчёта. Сила инерции
  • 5 Центробежная сила как реальная сила
  • 6 См. также
  • 7 Примечания
  • 8 Ссылки

Физический смысл

Для того, чтобы тело двигалось с центростремительным ускорением по окружности, необходимо приложение к телу центростремительной силы, равной F = mac, где ac — центростремительное ускорение.

В этом случае сила, действующая на связь Fc будет иметь право называться центробежной силой. Тогда, по третьему закону Ньютона:

Fc = − mac.

В инерциальных системах отсчёта действует закон инерции, то есть, в отсутствии действующих на него сил каждое тело движется по прямой и с постоянной скоростью. Если рассмотреть причину поворота тела, то станет ясно, что для его осуществления требуется придавать телу ускорение, изменяющее направление движения тела, что достигается приложением к нему силы, направление которой не совпадает с касательной к его траектории. Тогда поворот будет происходить под действием той составляющей этой силы, которая будет направлена перпендикулярно к касательной траектории, которая и будет центростремительной силой в самом общем случае движения по любой траектории.

В общем случае центр поворота не лежит на направлении действующей на тело силы, вызывающей отклонение движения от прямолинейного. Так, например, при движении Земли вокруг Солнца по своей эллиптической орбите центростремительная сила совпадает по направлению с действующей на Землю силой взаимного тяготения Земли и Солнца лишь в апогее и перигее.

Направление действия связи при движении по любой траектории, отличающейся от круговой, в общем случае не совпадает с направлением силы центростремительной, понимаемой, как нормальная сотавляющая действующей на тело силы.

В случае реального орбитального движения единственной силой, действующей на Землю, является сила тяготения. В таком случае называть, как это имеет место при движении по окружности, силу, действующую на связь, силой центробежной неверно, поскольку в общем случае мгновенный центр поворота тела по дуге окружности, которой аппроксимируется траектория в каждой её точке, не совпадает с началом вектора силы, вызывающей движение. Поэтому некоторые физики вообще избегают использовать термин «центробежная сила», как ненужный.[3] Что касается составляющей силы связи, направленной по касательной траектории, то, она будет изменять скорость движения по ней.

Формулировка

Обычно понятие центробежной силы используется в рамках классической (Ньютоновской) механики, в каковых остается основная часть данной статьи (хотя обобщение этого понятия и может быть в некоторых случаях достаточно легко получено для релятивистской механики).

По определению центробежной силой называется сила инерции (то есть в общем случае — часть полной силы инерции) в неинерциальной системе отсчета, не зависящая от скорости движения материальной точки в этой системе отсчета, а также не зависящая от ускорений (линейных или угловых) самой этой системы отсчета относительно инерциальной системы отсчета.

Для материальной точки центробежная сила выражается формулой:

где:

— центробежная сила приложенная к телу,
масса тела,
угловая скорость вращения неинерциальной системы отсчёта относительно лабораторной (направление вектора угловой скорости определяется по правилу буравчика),
радиус-вектор тела во вращающейся системе координат.

Эквивалентное выражение для центробежной силы можно записать как

если использовать обозначение для вектора, перпендикулярного оси вращения и проведенного от нее к данной материальной точке.

Центробежная сила для тел конечных размеров может быть рассчитана (как это обычно делается и для любых других сил) суммированием центробежных сил, действующих на материальные точки, являющиеся элементами, на которые мы мысленно разбиваем конечное тело.

Вывод

Пусть тело совершает сложное движение: движется относительно неинерциальной системы отсчёта со скоростью а сама система движется поступательно с линейной скоростью в инерциальной системе координат и одновременно вращается с угловой скоростью

Тогда линейная скорость тела в инерциальной системе координат равна:

где — радиус-вектор центра масс тела относительно неинерциальной системы отсчета. Продифференцируем данное уравнение:

Найдём значение каждого слагаемого в инерциальной системе координат:

где — линейное ускорение относительно системы, — угловое ускорение.

Таким образом, получаем:

Последнее слагаемое и будет центростремительным ускорением.

Раскрыв двойное векторное произведение и положив перпендикулярным оси вращения, получим:

Элементарное рассмотрение и мотивировка

Вращение с точки зрения инерциальной системы отсчета

Рассмотрим спицу, вращающуюся вокруг перпендикулярной к ней вертикальной оси с угловой скоростью ω. Вместе со спицей вращается надетый на неё шарик, соединённый с осью пружиной.

Согласно второму закону Ньютона шарик займёт положение равновесия на таком расстоянии R от центра диска, на котором сила натяжения пружины Fpr оказывается равной произведению массы шарика m на его ускорение[4] an = ω2R:

. [5]

Связанная со спицей система отсчёта вращается по отношению к инерциальной системе. Относительно системы отсчёта, связанной со спицей, шарик покоится, хотя на него действует сила упругости пружины. Это не противоречит второму закону Ньютона, так как вращающаяся система отсчёта не является инерциальной и соотношение F = ma в ней не выполняется.

Вращение с точки зрения неинерциальной системы отсчёта. Сила инерции

Для практических целей, однако, удобнее считать, что второй закон Ньютона выполняется и с точки зрения вращающейся системы отсчёта, введя для этого формально силу инерции Fcf = − Fpr = mω2R[5], действующую на шарик вдоль радиуса от центра диска наряду с реальной силой Fpr.

Силу инерции Fcf, вводимую во вращающейся системе отсчёта, называют центробежной силой. Эта сила действует на тело во вращающейся системе отсчёта, независимо от того, покоится тело в этой системе или движется относительно нее со скоростью v’.

Следует иметь в виду, что для правильного описания движения тел во вращающихся системах отсчёта, кроме центробежной силы следует также вводить силу Кориолиса.

В литературе встречается и совсем другое понимание термина «центробежная сила». Так иногда называют реальную силу, приложенную не к совершающему вращательное движение телу, а действующую со стороны тела на ограничивающие его движение связи. В рассмотренном выше примере так называли бы силу, действующую со стороны шарика на пружину. (См., например, ниже ссылку на БСЭ.)

Центробежная сила как реальная сила

Центростремительная и центробежная силы при движении тел по круговым траекториям с общей осью вращения

Применяемый не к связям, а, наоборот, к поворачиваемому телу, как объекту своего воздействия, термин «центробежная сила» (букв. cила, приложенная к поворачивающемуся или вращающемуся материальному телу, заставляющего его бежать от мгновенного центра поворота), есть эвфемизм, основанный на ложном толковании первого закона (принципа Ньютона)[6] в форме:

Всякое тело сопротивляется изменению своего состояния покоя или равномерного прямолинейного движения под действием внешней силы

Или ещё[7]:

Всякое тело стремится сохранять состояние покоя или равномерного прямолинейного движения до тех пор, пока не подействует внешняя сила.

Отголоском этой традиции и является представление о некоей силе, как о материальном факторе, реализующем это сопротивление или стремление. О существовании такой силы уместно было бы говорить, если бы, например, вопреки действующим силам, движущееся тело сохраняло бы свою скорость, но это не так[8].

Первый закон Ньютона, нередко называемый принципом и потому допускающим различия в словесной форме его выражения, сводится к утверждению, что природа вещей такова, что скорость движения материальной точки, как по величине, так и по направлению в некоторой системе отсчёта (сам Ньютон связывал её с эфиром, заполняющим всё пространство)[6], остаётся постоянной, но начинает изменяться тотчас, как возникает на то причина, называемая силой.

Рассматриваемое тело с массой (точнее — инертной массой) m приобретает отличающееся от нуля ускорение a в тот же момент t = 0, когда начинает действовать на него сила F (Второй закон Ньютона:). Однако для достижения отличающейся от нуля скорости v требуется некоторое время t в соответствии с определением импульса силы: t = mv / F. Или, иначе, скорость тела не изменяется сама по себе, без причины, но она начинает изменяться тотчас, как на него начинает действовать сила[9].

Использование термина «центробежная сила» правомочно тогда, когда точкой её приложения является не испытывающее поворот тело, а ограничивающее его движение связи. В этом смысле центробежная сила представляет собой один из членов в формулировке третьего закона Ньютона, антагониста центростремительной силе, вызывающей поворот рассматриваемого тела и к нему приложенной. Обе эти силы равны по величине и противоположны по направлению, но приложены к разным телам и потому не компенсируют друг друга, а вызывают реально ощутимый эффект — изменение направление движения тела (материальной точки).

Оставаясь в инерциальной системе отсчёта, рассмотрим два небесных тела, например, компонента двойной звезды с массами одного порядка величины M1 и M2, находящихся на расстоянии R друг от друга. В принятой модели эти звёзды рассматриваются как материальные точки и R есть расстояние между их центрами масс. В роли связи между этими телами выступает сила Всемирного тяготения FG:GM1M2 / R2, где G- гравитационная постоянная. Это — единственная здесь действующая сила, она вызывает ускоренное движение тел навстречу друг другу.

Однако, в том случае, если каждое из этих тел совершает вращение вокруг общего центра масс с линейными скоростями v1 = ω1 R1 и v2 = ω2 R2, то подобная динамическая система будет неограниченное время сохранять свою конфигурацию, если угловые скорости вращения этих тел будут равны: ω1 = ω2 = ω, а расстояния от центра вращения (центра масс) будут соотноситься, как: M1 / M2 = R2 / R1, причём R2 + R1 = R, что непосредственно следует из равенства действующих сил: F1 = M1a1 и F2 = M2a2, где ускорения равняются соответственно: a1= ω2R1 и a2 = ω2R2[10].

Центростремительные силы, вызывающие движение тел по круговым траекториям равны (по модулю): F1 =F2 = FG. При этом первая из них является центростремительной, а вторая — центробежной и наоборот: каждая из сил в соответствии с Третьим законом является и той, и другой.

Поэтому, строго говоря, использование каждого из обсуждаемых терминов излишне, поскольку они не обозначают никаких новых сил, являясь синонимами единственной силы — силы тяготения. То же самое справедливо и в отношении действия любой из упомянутых выше связей.

Однако, по мере изменения соотношения между рассматриваемыми массами, то есть всё более значительного расхождения в движении обладающих этими массами тел, разница в результатах действия каждой из рассматриваемых тел для наблюдателя становится всё более значительной.

В ряде случаев наблюдатель отождествляет себя с одним из принимающих участие тел, и потому оно становится для него неподвижным. В этом случае при столь большом нарушении симметрии в отношении к наблюдаемой картине, одна из этих сил оказывается неинтересной, поскольку практически не вызывает движения.

См. также

Примечания

  1. Вне контекста физики/механики/математики, например, в философии, публицистике или художественной литературе, а также иногда и в разговорной речи, слова центробежная сила могут нередко употребляться просто как обозначение некоего влияния, направленного прочь от некоторого «центра»; в таком употреблении это может быть никак не связано не только с каким-либо вращением, но и с понятием силы, как оно употребляется в физике.
  2. Зачастую это бывает удобно. Например, когда вращается целиком вся лаборатория, может быть более удобным рассматривать все движения относительно нее, введя лишь дополнительно силы инерции, в том числе центробежную, действующие на все материальные точки, чем учитывать постоянное изменение положения каждой точки относительно инерциальной системы отсчета.
  3. С. Э. Хайкин. Силы инерции и невесомость. М.,1967 г. Издательство «Наука».Главная редакция физико-математической литературы.
  4. Воспользуемся формулой центростремительного ускорения.
  5. 1 2 Физическая энциклопедия, т.4 — М.:Большая Российская Энциклопедия стр.494 и стр.495
  6. 1 2 Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  7. Ключевым в этой формулировке является утверждение о наличии у предметов материального мира неких волевых качеств, что было в начале формирования научных представлений об окружающем мире весьма распространённым способом обобщения результатов наблюдения за явлениями природы и выяснения свойственных ей общих закономерностей . Примером такого анималистического представления о природе являлся бытовавший в натурфилософии принцип: «Природа боится пустоты», от которого пришлось отказаться после эксперимента Торричелли (Торричеллиева пустота)
  8. В связи с этим Максвелл заметил, что, с таким же успехом можно было бы сказать, что кофе сопротивляется тому, чтобы стать сладким апеллируя к тому, что оно становится сладким не само по себе, а лишь после того, что в него положен сахар.
  9. С. Э. Хайкин. Силы инерции и невесомость. М.: «Наука», 1967 г.
  10. При этом в каждый малый момент времени каждое из тел будет приближаться к центру на такое расстояние, какое равно разности расстояний между его траекторией и касательной в точке наблюдения. Иными словами, тела падают друг на друга, но всегда промахиваются.

Ссылки

  • «Центробежная сила» в Большой советской энциклопедии
  • Матвеев А. Н. Механика и теория относительности: Учебник для студентов вузов. — 3-е издание. — М.: ООО "Издательский дом «ОНИКС 21 век»: ООО "Издательство «Мир и образование», 2003. — с. 405—406
Категории:
  • Сила
  • Сепарация

загрузка...
Центробежная сила
Страница сгенерировалась за 0.018856 сек.
Карта сайта