загрузка...

Вопросно-ответная система


Эта статья — об автоматических информационных системах. О типе социальных сетей см. система вопросов и ответов (веб-сервис).

Вопросно-ответная система (QA-система; от англ. QA — англ. Question-answering system) — информационная система, способная принимать вопросы и отвечать на них на естественном языке, другими словами, это система с естественно-языковым интерфейсом.

Содержание

  • 1 Классификация
  • 2 Архитектура
  • 3 Схема работы
  • 4 Проблемы
  • 5 Направления развития вопросно-ответных систем
  • 6 Оценка качества вопросно-ответных систем
  • 7 См. также
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

Классификация

Вопросно-ответные системы можно условно разделить на:

  • Узкоспециализированные QA-системы работают в конкретных областях (например, медицина или обслуживание автомобилей).
  • Общие QA-системы работают с информацией по всем областям знаний, таким образом появляется возможность вести поиск в смежных областях.

Архитектура

Первые QA-системы[1] были разработаны в 1960х годах и являлись естественно-языковыми оболочками для экспертных систем, ориентированных на конкретные области. Современные системы предназначаются для поиска ответов на вопросы в предоставляемых документах с использованием технологий обработки естественных языков (NLP).

Современные QA-системы обычно включают особый модуль — классификатор вопросов, который определяет тип вопроса и, соответственно, ожидаемого ответа. После этого анализа система постепенно применяет к предоставленным документам все более сложные и тонкие методы NLP, отбрасывая ненужную информацию. Самый грубый метод — поиск в документах — предполагает использование системы поиска информации для отбора частей текста, потенциально содержащих ответ. Затем фильтр выделяет фразы, похожие на ожидаемый ответ (например, на вопрос «Кто …» фильтр вернет кусочки текста, содержащие имена людей). И, наконец, модуль выделения ответов найдет среди этих фраз правильный ответ.

Схема работы

Производительность вопросно-ответной системы зависит от качества текстовой базы — если в ней нет ответов на вопросы, QA-система мало что сможет найти. Чем больше база — тем лучше, но только если она содержит нужную информацию. Большие хранилища (такие как Интернет) содержат много избыточной информации[2]. Это ведёт к двум положительным моментам:

  1. Так как информация представлена в разных формах, QA-система быстрее найдет подходящий ответ. Не придется прибегать к сложным методам обработки текстов.
  2. Правильная информация чаще повторяется, поэтому ошибки в документах отсеиваются.

Проблемы

В 2002 году группа исследователей написала план исследований в области вопросно-ответных систем[3]. Предлагалось рассмотреть следующие вопросы:

Типы вопросов
Разные вопросы требуют разных методов поиска ответов. Поэтому нужно составить или улучшить методические списки типов возможных вопросов.
Обработка вопросов
Одну и ту же информацию можно запросить разными способами. Требуется создать эффективные методы понимания и обработки семантики (смысла) предложения. Важно, чтобы программа распознавала эквивалентные по смыслу вопросы, независимо от используемых стиля, слов, синтаксических взаимосвязей и идиом. Хотелось бы, чтобы QA-система разделяла сложные вопросы на несколько простых, и правильно трактовала контекстно-зависимые фразы, возможно, уточняя их у пользователя в процессе диалога.
Контекстные вопросы
Вопросы задаются в определенном контексте. Контекст может уточнить запрос, устранить двусмысленность или следить за ходом мыслей пользователя по серии вопросов.
Источники знаний для QA-системы 
Перед тем как отвечать на вопрос, неплохо было бы осведомиться о доступных базах текстов. Какие бы способы обработки текстов ни применялись, мы не найдем правильного ответа, если его нет в базах.
Выделение ответов
Правильное выполнение этой процедуры зависит от сложности вопроса, его типа, контекста, качества доступных текстов, метода поиска и др. — огромного числа факторов. Поэтому подходить к изучению методов обработки текста нужно со всей осторожностью, и эта проблема заслуживает особого внимания.
Формулировка ответа
Ответ должен быть как можно более естественным. В некоторых случаях достаточно и простого выделения его из текста. К примеру, если требуется наименование (имя человека, название прибора, болезни), величина (денежный курс, длина, размер) или дата («Когда родился Иван Грозный») — прямого ответа достаточно. Но иногда приходится иметь дело со сложными запросами, и здесь нужны особые алгоритмы слияния ответов из разных документов.
Ответы на вопросы в реальном времени 
Нужно сделать систему, которая бы находила ответы в хранилищах за несколько секунд, независимо от сложности и двусмысленности вопроса, размера и обширности документной базы.
Многоязыковые запросы
Разработка систем для работы и поиска на других языках (в том числе автоматический перевод).
Интерактивность
Зачастую информация, предлагаемая QA-системой в качестве ответа, неполна. Возможно, система неправильно определила тип вопроса или неправильно «поняла» его. В этом случае пользователь может захотеть не только переформулировать свой запрос, но и «объясниться» с программой с помощью диалога.
Механизм рассуждений (вывода)
Некоторые пользователи хотели бы получить ответ, выходящий за рамки доступных текстов. Для этого в QA-систему нужно добавить знания, общие для большинства областей (см. Общие онтологии в информатике), а также средства автоматического вывода новых знаний.
Профили пользователей QA-систем
Сведения о пользователе, такие как область интересов, манера его речи и рассуждения, подразумеваемые по умолчанию факты, могли бы существенно увеличить производительность системы.

Направления развития вопросно-ответных систем

С момента появления первых прототипов вопросно-отвентных систем их область применения значительно расширилась[4]. Например, их используют в ответах на вопросы, связанные со временем, геолокационные вопросы, вопросы определения понятий, библиографические, многоязыковые вопросы, вопросы, связанные с мультимедиа (визуальной, аудио- и видео- информацией). Изучаются смежные области, такие как построение интерактивных QA-систем (уточняющие вопросы, требующиеся для разъяснения первоначального), повторное использование ответов и представление знаний, использование логического вывода из имеющей информации для получения ответов на вопросы и т. п., прогнозирование, какие вопросы могут быть заданы, анализ настроения.

Оценка качества вопросно-ответных систем

Вопросно-ответные системы на постоянной основе обсуждаются в рамках проектов: TREC[5], CLEF (англ.)русск.[6], NTCIR[7]

См. также

  • Виртуальный цифровой помощник: Siri (WolframAlpha)
  • Нигма — Интеллектуальная поисковая система

Примечания

  1. Hirschman, L. & Gaizauskas, R. (2001) Natural Language Question Answering. The View from Here. Natural Language Engineering (2001), 7:4:275-300 Cambridge University Press.
  2. Lin, J. (2002). The Web as a Resource for Question Answering: Perspectives and Challenges. In Proceedings of the Third International Conference on Language Resources and Evaluation (LREC 2002).
  3. Burger, J., Cardie, C., Chaudhri, V., Gaizauskas, R., Harabagiu, S., Israel, D., Jacquemin, C., Lin, C-Y., Maiorano, S., Miller, G., Moldovan, D., Ogden, B., Prager, J., Riloff, E., Singhal, A., Shrihari, R., Strzalkowski, T., Voorhees, E., Weishedel, R. Issues, Tasks and Program Structures to Roadmap Research in Question Answering (QA).
  4. Maybury, M. T. editor. 2004. New Directions in Question Answering. AAAI/MIT Press.
  5. TREC competition (англ.)
  6. CLEF evaluation campaign (англ.)
  7. NTCIR project (англ.)

Литература

  • Dragomir R. Radev, John Prager, and Valerie Samn. Ranking suspected answers to natural language questions using predictive annotation. In Proceedings of the 6th Conference on Applied Natural Language Processing, Seattle, WA, May 2000.
  • Hovy, E., Gerber, L., Hermjakob, U., Junk, M. & Lin, C. (2000) Question Answering in Webclopedia. In: 9th Text Retrieval Conference.
  • Huettner, A. (2000) Question Answering. In: 5th Search Engine Meeting.
  • John Prager, Eric Brown, Anni Coden, and Dragomir Radev. Question-answering by predictive annotation. In Proceedings, 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Athens, Greece, July 2000.
  • Katz, B., Felshin, S. & Lin, J. (2002) The START Multimedia Information System: Current Technology and Future Directions. In: International Workshop on Multimedia Information Systems.
  • Wong, W. (2005) Practical Approach to Knowledge-based Question Answering with Natural Language Understanding and Advanced Reasoning. In: Master; National Technical University College of Malaysia.

Ссылки

QA-системы и демо-версии
  • Одна из первых размещённых в интернет вопросно-ответная система START на сайте MIT.
  • Вопросно-ответная система BrainBoost на сайте Answers.com (англ.)русск. (первоначально BrainBoost.com).
  • QA-система, встроенная в поисковик Ask.com.
  • Вопросно-ответная система OpenEphyra с открытым исходным кодом.
  • AnswerBus.
  • Многоязыковая QA-система askEd!m (English, Japanese, Chinese, Русский and Swedish).
  • Проект Evi от True Knowledge (англ.)русск..
  • Ephyra.
  • Русскоговорящая вопросно-ответная система Робочат.
Специализированные QA-системы
  • EAGLi: MEDLINE question answering engine (англ.).



Это примечание по возможности следует заменить более точным.
  Веб и веб-сайты
Глобально

Всемирная паутина (Веб 1.0 • Веб 2.0 • Web 3.0) • Семантическая паутина • Рунет

Локально

Сайт • Портал • Страница • Служба • Кольцо

Виды сайтов
и сервисов

Виртуальный атлас • Баннерная сеть • Блог (платформа) • Видеохостинг • Вики (список движков список сайтов) • Сайт-визитка • Вопрос-ответ • Закладки • Службы знакомств • Каталог ресурсов • Интернет-магазин • Микроблог • Тамблелог • Новостной сайт • Поисковая система (список) • Порносайт • Социальная сеть • BitTorrent-трекер • Файлообменник • Форум (Сервис • Имиджборд) • Фотохостинг • Чат

Создание и
обслуживание

Разработка • Мастер • Дизайн • Вёрстка • Программирование • Юзабилити • Модератор • Системный администратор • Поисковая оптимизация (SEO) • Продвижение сайта • Опыт взаимодействия • Регистрация пользователя

Типы макетов,
страниц, сайтов

Статический • Динамический • Фиксированный • Резиновый • Динамично эластичный

Техническое

Веб-сервер (сравнение) • Браузер (список сравнение) • CMF (список) • CMS (список) • HTTP (ответы заголовки) • SPDY • CGI • HTML • XHTML • CSS • JavaScript • DHTML • DOM • XML • AJAX • JSON • Flash • RSS • Atom • Микроформат • favicon.ico • robots.txt • Sitemaps • Карта сайта • .htaccess

Маркетинг

Интернет-маркетинг • Интернет-реклама • Баннер • Контекстная реклама

Социум и культура

Блогосфера • Интернет-сообщество (районное) • Сетевая литература


Источник: Русская википедия 2012

Искать все статьи, похожие на текущую (Вопросно-ответная система)
Вы можете разместить ссылку на этот материал у себя на сайте, блоге или форуме

HTML-cсылка на публикацию
BB-cсылка на публикацию (для форумов)
Прямая ссылка на публикацию


Это интересно! Синяя лирика № 2   территориально обособленный   вдалбивавший   Сенкевич, Мечеслав Иванович   Данцер Иосиф-Мельхиор   
Универсальная энциклопедия 2012
Карта сайта
Страница создана за 0.033308 сек. Всего документов включено в базу знаний: 5150576